Quantifying Rail Life Extension with Infinite Pattern Control

Chris Lidberg

Product Manager

Loram, Maintenance of Way

HEAVY HAUL SEMINAR · JUNE 8 - 9

LORAM WRI 2023

Why Grind

Rail grinding leads to an extension of rail life by

- Removing rolling contact fatigue (RCF) on the surface of the rail
- Maintaining the optimal rail profile

E. Magel, J. Kalousek, P. Sroba, "Chasing the Magic Wear Rate", in J. Pombo, (Editor), "Proceedings of

the Second International Conference on Railway Technology: Research, Development and Maintenance", Civil-Com p Press, Stirlingshire, UK, Paper 116, 2014. doi: 10.4203/ ccp.104.116

HEAVY HAUL SEMINAR . JUNE 8 - 9

Optimized Rail Profile (AREMA Best Practices)

Rail wear due to tonnage causes railsurface plastic flow and surface fatigue (spalling, shelling, and head checks) and increases the internal stresses in the rail that initiate rail defects

HEAVY HAUL SEMINAR · JUNE 8 - 9

Optimized Rail Profile (AREMA Best Practices)

Maintaining designed transverse rail profiles (templates) optimized over expected wheel profiles through rail grinding leads to reduced contact stress, improved vehicle stability in tangent track, and improved wheelset curving

HEAVY HAUL SEMINAR · JUNE 8 - 9

Grind Patterns

A grind pattern is a distribution of grind modules at specific angles and amps throughout a rail grinder used to grind to a template

Pattern Selection (Static)

- Up to 50 patterns
- Grind speeds called at 1 mph increments
- Patterns chosen to "fit" required metal removal
- <u>Ensure minimum</u> depth of cut is achieved

HEAVY HAUL SEMINAR · JUNE 8 - 9

LORAMAN WRI 2023

Pattern-Rail Interaction

- A pattern does not give consistent metal removal depending on the rail shape
- The same pattern can yield completely different metal removal for a flat, low rail compared to a gauge-worn high rail

Pattern Creation (Dynamic)

- Practically infinite number of patterns
- Grind speeds called at 0.1 mph increments
- Patterns systematically created to match desired finish rail profile
- Targets <u>exact</u> required depth of cut

HEAVY HAUL SEMINAR · JUNE 8 - 9

LORAM NRI 2023

Exact Match to the Template

HEAVY HAUL SEMINAR · JUNE 8 - 9

Expected Deviations from Template

HEAVY HAUL SEMINAR · JUNE 8 - 9

Rail Life Increase

*Grind wear estimated based on expected metal removal on same inspections using pattern creation and pattern selection ** Results presented at WRI in 2021

Modeling Natural Wear

- Using a digital twin, can we compare expected natural wear rates of the most representative pattern selection cases to the pattern creation cases?
- What is the evolution of wear rates during a normal cycle? What if the cycle is extended beyond a typical 30-40 MGT (million gross tons)?
- How do the natural wear rates effect rail life in each case?

Expected Template Deviation – Pattern Creation

HEAVY HAUL SEMINAR · JUNE 8 - 9

Natural Wear Modeling

- Traffic patterns, wheel and rail profiles, friction conditions, and metallurgy are used to forecast natural wear with accumulated tonnage postgrind
- Rail profiles are split between two cases to determine the expected natural wear between pattern creation and pattern selection

(1) The most representative profiles on the high and low rails of curves found during the pattern selection time period

(2) The same curves from (1) with the expected output of pattern creation

Pattern Selection Case

HEAVY HAUL SEMINAR . JUNE 8 - 9

Full Wear Simulation

Wear Modeling Results

Selection						Creation						
		High Rail			Low Rail		_	High Rail			Low Rail	
Case	Top Wear [inch]	Lateral Wear [inch]	Gauge Wear [inch]	Top Wear [inch]	Lateral Wear [inch]	Gauge Wear [inch]	Top Wear [inch]	Lateral Wear [inch]	Gauge Wear [inch]	Top Wear [inch]	Lateral Wear [inch]	Gauge Wear [inch]
1	0.002	0.000	0.004	0.011	0.000	0.001	0.002	0.000	0.006	0.013	0.000	0.000
2	0.006	0.003	0.010	0.014	0.000	0.001	0.004	0.000	0.009	0.015	0.000	0.000
3	0.002	0.001	0.006	0.012	0.000	0.002	0.002	0.000	0.007	0.015	0.000	0.000
4	0.001	0.000	0.005	0.013	0.000	0.001	0.002	0.000	0.007	0.015	0.000	0.000
5	0.001	0.000	0.004	0.012	0.000	0.001	0.002	0.000	0.006	0.015	0.000	0.000
6	0.003	0.076	0.050	0.013	0.000	0.001	0.005	0.000	0.010	0.015	0.000	0.000
7	0.001	0.022	0.016	0.012	0.000	0.002	0.002	0.000	0.007	0.015	0.000	0.000
8	0.000	0.024	0.014	0.009	0.000	0.001	0.002	0.000	0.003	0.012	0.000	0.000
9	0.004	0.028	0.020	0.014	0.000	0.000	0.004	0.000	0.009	0.015	0.000	0.000
10	0.001	0.012	0.011	0.011	0.000	0.002	0.002	0.000	0.006	0.014	0.000	0.000

* Wear modeling results are 40 MGT postgrind

HEAVY HAUL SEMINAR · JUNE 8 - 9

LORAM WRI 2023

Wear Simulation – Mild Curve (Case 4)

Creation

LORAMAN WRI 2023

Wear Simulation – Medium Curve (Case 7)

HEAVY HAUL SEMINAR · JUNE 8 - 9

Selection

LORAMAN WRI 2023

Creation

Wear Simulation – Sharp Curve (Case 6)

HEAVY HAUL SEMINAR · JUNE 8 - 9

LORAM WRI 2023

Creation

Wear Rates Postgrind

Low Rail Vertical Wear Rates Postgrind

Wear Rates Postgrind

High Rail Combined Wear Rates Postgrind

Updates in Natural Wear

Low Rail Vertical Wear Rates

Low Rail Expected Life (MGT)						
Wear Rate	Selection	Creation	% Change			
Assumed Natural Wear	570	677	19%			
Modelled Natural Wear	678	764	13%			

HEAVY HAUL SEMINAR · JUNE 8 - 9

High Rail Gauge Corner Wear Rates

High Rail Expected Life (MGT)						
Wear Rate	Selection	Creation	% Change			
Assumed Natural Wear	489	555	13%			
Modelled Natural Wear	505	683	35%			

Conclusions

- Modeling natural wear based on most expected traffic and wheel conditions show that initial natural wear estimates were higher than expected
- Wear rates in the simulated profile have an uneven balance in life between low and high rails
- Even with higher natural wear rates on low rails, due to lower grind efforts on vertical wear location, rail is expected to last longer
- Results continue to show that pattern creation is an effective tool to extend the life of the rail. With optimal profile design, extension of rail life could be higher than we are realizing today.

HEAVY HAUL SEMINAR · JUNE 8 - 9

Thank you!

Special thanks to the Norfolk Southern and Brandon Sherrod for their cooperation in field testing over the past four years.

Also wanted to thank my colleagues at LTI who were instrumental in analysis presented.

HEAVY HAUL SEMINAR · JUNE 8 - 9

Chris Lidberg, M.S., PMP Product Manager christopher.j.lidberg@loram.com +1 612 219 2285

